设A为三阶实对称矩阵,A的秩为2,且

题目
设A为三阶实对称矩阵,A的秩为2,且

  (Ⅰ)求A的所有特征值与特征向量;
  (Ⅱ)求矩阵A.

如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设三阶矩阵,若A的伴随矩阵的秩等于1,则必有

A.a=b或a+2b=0
B.a=b或a+2b≠0
C.a≠b且a+2b=0
D.a≠b且a+2b≠0

答案:C
解析:

第2题:

设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



答案:C
解析:

第3题:

设三阶实对称矩阵的特征值为3,3,0,则A的秩r(A)=()

A、2

B、3

C、4

D、5


参考答案:A

第4题:

设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,
  对应特征向量为(-1,0,1)^T.
  (1)求A的其他特征值与特征向量;
  (2)求A.


答案:
解析:

第5题:

设矩阵是4阶非零矩阵, 且满足证明矩阵B的秩


答案:
解析:

第6题:

n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。

A.所有k级子式为正(k=1,2,…,n)
B.A的所有特征值非负
C.
D.秩(A)=n

答案:A
解析:

第7题:

设矩阵,则A^3的秩为________


答案:
解析:

第8题:

已知,P为三阶非零矩阵,且满足PQ=O,则

A.t=6时P的秩必为1
B.t-6时P的秩必为2
C.t≠6时P的秩必为1
D.t≠6时P的秩必为2

答案:C
解析:
因为P≠O,所以秩r(P)≥1,问题是r(P)究竟为1还是2?A是m×n矩阵,B是n×s矩阵,AB=O,则r(A)+r(B)≤n.当t=6时,r(Q)=1.于是从r(P)+r(Q)≤3得 r(P)≤2.因此(A)、(B)中对秩r(P)的判定都有可能成立,但不是必成立.所以(A)、(B)均不正确.当t≠6时,r(Q)=2.于是从r(P)+r(Q)≤3得r(P)≤1.故应选(C).

第9题:

设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


答案:1、2
解析:
因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

第10题:

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


答案:
解析: