已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。
第1题:
第2题:
第3题:
A.A的n个特征向量两两正交
B.A的n个特征向量组成单位正交向量组
C.A的k重特征值λ0,有r(λ0E-A)=n-k
D.A的k重特征值λ。,有r(λ0E-A)=k
第4题:
第5题:
第6题:
第7题:
第8题:
第9题:
第10题:
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值A的特征向量是: A. Pa B. P-1a C.PTa D.(P-1)Ta
单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A α是矩阵-2A的属于特征值-2λ的特征向量B α是矩阵的属于特征值的特征向量C α是矩阵A*的属于特征值的特征向量D α是矩阵AT的属于特征值λ的特征向量
单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A PαB P-1αC PTαD (P-1)Tα
问答题证明: (1)若α(→)1,α(→)2,…,α(→)r是A的属于特征值λ的特征向量,则α(→)1,α(→)2,…,α(→)r的任一个非零线性组合也是A的属于λ的特征向量。 (2)矩阵可逆的充分必要条件是它的特征值都不为0。
设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵 B.A有不为0的特征值 C.A的特征值全为0 D.A有n个线性无关的特征向量
已知三维列向量a,β满足aTβ,设3阶矩阵A=βaT,则: A. β是A的属于特征值0的特征向量 B. a是A的属于特征值0的特征向量 C. β是A的属于特征值3的特征向量 D. a是A的属于特征值3的特征向量
A.β是A的属于特征值0的特征向量 B.α是A的属于特征值0的特征向量 C.β是A的属于特征值3的特征向量 D.α是A的属于特征值3的特征向量
设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: A. Pa B. P-1A C. PTa D.(P-1)Ta
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量
已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则: A. β是A的属于特征值0的特征向量 B. α是A的属于特征值0的特征向量 C. β是A的属于特征值3的特征向量 D. α是A的属于特征值3的特征向量