什么是电力系统的振荡?引起振荡的原因一般有哪些?

题目

什么是电力系统的振荡?引起振荡的原因一般有哪些?

如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

什么是次同步振荡?其产生原因和防止措施有哪些?


正确答案: 次同步振荡就是当发电机经串联电容补偿的线路接入电网时,如果串联补偿较高,网络的电气谐振频率容易和大型汽轮发电机的轴系自然扭振频率产生谐振,通常次谐振频率低于同步频率。并造成发电机大轴扭振破坏。
同样高压支流输电线路(HVDC.或静止无功补偿器(SVC.的控制参数选择不当时,也可能激发次同步振荡。
一般防止次同步振荡的措施为:
(1)附加和改造一次设备。
(2)降低串联补偿度。
(3)通过二次设备提供对扭振模式的阻尼(类似于PSS的原理)。

第2题:

什么叫发电机或电力系统的振荡?有什么危害?


正确答案: 发电机或电力系统受到突然的扰动之后,在一个暂态过程中,功角δ时大时小,来回变化,转子速度环绕同步转速时高时低的减幅循环过程,就叫振荡,若振荡幅度较小,未超过稳定限额,振荡过程将逐步衰减并最终恢复正常运行,此种情况属动态稳定。如果振荡开始时过剩转矩很大,转子惯量使发电机的工作点不断向δ增大方向移动,一直冲过功率极限点,之后,汽轮机输入功率与发电机功率无法平衡,从而造成失步。

第3题:

电力系统振荡对距离保护有什么影响?


参考答案:振荡中心位于保护范围的正方向时,若测量阻抗轨迹进入阻抗继电器动作区,阻抗继电器将受振荡影响而周期性误动作;阻抗继电器将受振荡影响的程度与阻抗继电器的动作特性有关;阻抗继电器动作特性在复平面上沿振荡轨迹方向的动作区域面积越大,受振荡的影响也越大;而且越靠近振荡中心,影响就越大;振荡中心在保护范围外或保护范围的反方向,则不受影响;若保护动作时限大于系统振荡周期,保护也不受系统振荡影响。

第4题:

什么是电力系统振荡?是怎样形成的?


正确答案: 在正常运行中,由于系统内发生突变如发生短路,大容量发电机跳闸,突然切断大负荷线路及电网结构及运行方式不合理等,以及系统电力不足引起电压崩溃,联线跳闸及非同期并列操作等原因,使电力系统遭破坏。由于这些事故,造成系统之间失去同步,因而称之为振荡。

第5题:

电力系统发生振荡的原因是什么?


正确答案: 系统发生振荡的主要原因是:
(1)电网发生严重事故,特别是邻近长距离联络线发生短路故障。
(2)长距离线路送电到受端电网,输送功率超过其稳定极限。
(3)环状网络(或并列双回线)突然开环,使两部分电网联络阻抗增大。
(4)送、受端之间的大型联络变压器突然断开或电网大型机组突然切除,使联络阻抗增大。
(5)大型发电机(特别是送端发电厂)进相运行或失去励磁,大型调相机欠励磁运行。
(6)事故时开关或继电保护拒动或误动,无自动调节装臵或虽有而失灵。
(7)电源间非同期合闸未能拖入同步。

第6题:

系统低频振荡产生的原因,主要是由电力系统的负阻尼效应引起。


正确答案:正确

第7题:

什么是电力系统振荡?


正确答案: 由于发电厂引出线或线路开关故障、跳闸等原因,使电网系统动态稳定受到破坏引起频率表指示异常,负荷表、电压表大幅度摆动的不稳定现象称为电力系统振荡。
系统振荡时,发电机发出有节奏的鸣声。为了迅速将发电机拖入同步,一般应增加无功,减少有功,减少汽轮机输出功率以取得平衡。

第8题:

电力系统振荡与短路有什么区别?电力系统振荡对哪些继电保护装置有影响?哪些保护装置不受影响?
电力系统振荡与短路有区别有:
(1)短路电流、电压是突变的,振荡变化速度较慢,也是周期性的;
(2)短路电流、电压之间角度基本不变,而振荡随功角的变化而变化;
(3)短路时有负序、零序分量,而振荡没有负序、零序分量。
电力系统振荡时,对继电保护装置的电流继电器、阻抗继电器有影响。
(1)对电流继电器的影响。电力系统振荡时,流入继电器的振荡电流随时间变化,当振荡电流达到继电器的动作电流时,继电器动作;当振荡电流降低到继电器的返回电流时,继电器返回。一般情况下掁荡周期较短,当保护装置的时限大于1.5~2s时,就可能躲过振荡误动作。
(2)对阻抗继电器的影响。周期性振荡时,电网中任一点的电压和流经线路的电流将随两侧电源电动势间相位角的变化而变化。振荡电流越大,电压就越低,阻抗继电器可能动作;振荡电流越小,电压就越高,阻抗继电器返回。如果阻抗继电器触点闭合的持续时间长,有可能造成保护装置误动作。不受振荡影响的保护从原理上来讲有相差动保护和电流差动纵联保护等。

第9题:

什么是电力系统振荡?有何现象和危害?


正确答案: 振荡就是发电机与电网电源之间或电网两部分电源之间功角8的摆动现象。电力系统的振荡有同步振荡和异步振荡两种情况,我们把能够保持同步而稳定运行的振蔼称为同步振荡,导致失去同步而不能正常运行的振荡称为异步振荡。当电力系统稳定破坏后,电网内的发电机组将失去同步,转入非同步运行状态,此时电网将发生异步振荡。
在电力系统事故发生后,若不及时采取有效措施,可能导致电力系统暂态稳定破坏;再一些结构薄弱的电力系统中也可能发生静态稳定破坏事故。电力系统稳定破坏或其他一些原因(如发电机失磁或电源的非同期合闸等)均可能引起电力系统振荡。电网发生振荡时的现象是:
电网内的发电机,变压器及联络线的电流表,电压表功率表周期性地剧烈摆动;发电机,调相机和变压器在表计摆动的同时发出有节奏的翁鸣声。
失去同步的发电机与电网联络或电网间联络线上的输送功率表,电流表将大幅度往复摆动。
电压振荡最激烈,即摆动幅度最大的地方是电网振荡中心,振荡中心电压周期性地降至接近与零(每一周期约降低至零值一次),随着离振荡中心距离的增加,电压波动逐渐减小,此时白炽灯随电压波动有不同的明暗现象;当然如果联络线的阻抗较大,两侧电厂的电容也很大则线路两端的电压振荡将不大。
失去同期的发电厂与电网之间,电网与电网之间虽有电气联系,但仍有频率差出现,送端部分电网的频率升高,受端部分的电网频率降低,并略有摆动。
发生振荡时的危害是:发电机间不能维持正常运行,电网的电流,电压和功率将大幅度波动,且离振荡中心越近,振荡幅度越大,严重时将使电网解列,并造成部分发电厂停电及大量负荷停电,从而造成巨大的经济损失。

第10题:

什么是电力系统的振荡?


正确答案: 1、电力系统的振荡是指发电机与系统电源之间或系统两部分电源之间功角 的摆动现象。
2、振荡有同期振荡和非同期振荡两种情况,能够保持同步而稳定运行的振荡称为同期振荡;导致失去同步而不能正常运行的振荡称为非同期振荡。