用回溯法解0/1背包问题时,该问题的解空间结构为()结构。

题目

用回溯法解0/1背包问题时,该问题的解空间结构为()结构。

如果没有搜索结果或未解决您的问题,请直接 联系老师 获取答案。
相似问题和答案

第1题:

不能保证求得0-1背包问题的最优解。

A.分支限界法

B.贪心算法

C.回溯法

D.动态规划策略


正确答案:B
解析:题中的分支界限法、回溯法和动态规划策略等实质都需要遍历所有可能的情况(分支界限法会避免没必要的计算分支,在一定程度上优化了算法)。而贪心算法只能保证在当前这一步计算是最优的选择,而不能保证全局的最优解。

第2题:

利用贪心法求解0/1背包问题时,(55)能够确保获得最优解。用动态规划方法求解 0/1背包问题时,将“用前i个物品来装容量是X的背包”的0/1背包问题记为KNAP(1,i,X),设fi(x)是KNAP(1,i,X)最优解的效益值,第j个物品的重量和放入背包后取得效益值分别为 wj和pj(j=1~n)。则依次求解f0(x)、f1(x)、...、fn(X)的过程中使用的递推关系式为(56)。.

A.优先选取重量最小的物品

B.优先选取效益最大的物品

C.优先选取单位重量效益最大的物品

D.没有任何准则


正确答案:D
解析:本题考查0/1背包问题的动态规划求解方法。
  利用贪心法可以解决普通背包问题(即允许将物品的一部分装入背包),此时使用“优先选取单位重量效益最大的物品”的量度标准可以获得问题最优解,但是贪心法不能用来求解0/1背包问题,题目中供选择的A、B、C三种量度标准均不能确保获得最优解。
  利用动态规划求解0/1背包问题时,按照题目中约定的记号。KNAP(1,i,X)的最优解来自且仅来自于以下两种情况之一:
  . 第i个物品不装入背包,此时最优解的值就是子问题KNAP(1,i-1,X)的最优解的效益值,即为fi-1(X);
  . 第i个物品装入背包,此时最优解的值为第i个物品的效益值与子问题 KNAP(1,i-1,X-wi)的最优解效益值之和,即为fi-1(X-wi)+pi。
  综上,KNAP(1,i,X)最优解的值为以上两种情况中效益值更大者,即取max。

第3题:

回溯法解旅行售货员问题时的解空间树是子集树。()

此题为判断题(对,错)。


正确答案:√

第4题:

● (65) 不能保证求得0-1 背包问题的最优解。

(65)

A. 分支限界法

B. 贪心算法

C. 回溯法

D. 动态规划策略


正确答案:B

第5题:

利用贪心法求解0/1背包问题时,(26)能够确保获得最优解。用动态规划方求解O/1背包问题时,将“用前i个物品来装容量是x的背包”的0/1背包问题记为KNAP(1,i,X)设fi(X)是KNAP(1,i,X)最优解的效益值,第j个物品的重量和放入背包后取得效益值分别为W和p(j=1~n),则依次求解f0(X),f1(X),…,fn(X)的过程中使用的递推关系式为(27)。

A.优先选取重量最小的物品

B.优先选取效益最大的物品

C.优先选取单位重量效益最大的物品

D.没有任何准则


正确答案:C

第6题:

回溯法也称为试探法。以下关于回溯法的结论中正确的是(50)。

A.即使问题的解存在,回溯法不一定能找到问题的解

B.回溯法找到的问题的解不一定是最优解

C.回溯法不能找到问题的全部解

D.回溯法无法避免求出的问题解的重复


正确答案:B
解析:回溯法又称为试探法,是找到问题解的一种搜索策略,就是在用某种方法找出的解的过程中,若中间项结果满足所解问题的条件,则一直沿这个方向搜索下去,直到无路可走或无结果,则开始回溯,改变其前一项的方向(或值)继续搜索。若其上一项的方向(或值)都已经测试过,还无路可走或无结果,则再继续回溯到更前一项,改变其方向(或值)继续搜索。若找到了一个符合条件的解,则停止或输出这个结果继续搜索,这个解不一定是最优解;否则继续回溯下去,直到回溯到问题的开始处(不能再回溯),仍没有找到符合条件的解,则表示此问题无解或已经找到了全部的解。

第7题:

0-1背包问题可以描述为:有n个物品,对i=1,2,…,n,第i个物品价值为vi ,重量为wi(vi,和wi为非负数),背包容量为W(W为非负数),选择其中一些物品装入背包,使装入背包物品的总价值最大,,且总重量不超过背包容量,即,其中,xi∈{0,1},xi=0表示第i个物品不放入背包,xi=1表示第i个物品 放入背包。

【问题1】(8分)

用回溯法求解此0-1背包问题,请填充下面伪代码中(1)~(4)处空缺。

回溯法是一种系统的搜索方法。在确定解空间后,回溯法从根结点开始,按照深度优先策略遍历解空间树,搜索满足约束条件的解。对每一个当前结点,若扩展该结点己经不满足约束条件,则不再继续扩展。为了进一步提高算法的搜索效率,往往需要设计一个限界函数,判断并剪枝那些即使扩展了也不能得到最优解的结点。现在假设已经设计了BOUND(v,w,k,W)函数,其中v, w, k和W分别表示当前已经获得的价值、当前背包的重量、己经确定是否选择的物品数和背包的总容量。对应于搜索树中的某个结点,该函数值表示确定了部分物品是否选择之后,对剩下的物品在满足约束条件的前提下进行选择可能获得的最大价值,若该价值小于等于当前已经得到的最优解,则该结点无需再扩展。

下面给出0-1背包问题的回溯算法伪代码。

函数参数说明如下:

W:背包容量;n:物品个数;w:重量数组;v:价值数组;fw:获得最大价值时背包的重量;fp:背包获得的最大价值;X:问题的最优解。

变量说明如下:

cw:当前的背包重量;cp:当前获得的价值;k:当前考虑的物品编号;Y:当前已获得的部分解。

BKNAP(W,n,w,v,fw,fp,X)

1 cw ← cp ← 0

2 (1)

3 fp ← -1

4 while true

5 while k≤n and cw+w[k]≤W do

6 (2)

7 cp ← cp+v[k]

8 Y[k]← 1

9 k ← k+1

10 if k>n then

11 if fp<cp then

12 fp ← cp

13 fw ← ew

14 k ← n

15 X ← Y

16 else Y(k)← 0

17 while BOUND(cp,cw,k,W) ≤fp do

18 while k≠0 and Y(k)≠1 do

19 (3)

20 if k=0 then return

21 Y[k]←0

22 cw ← cw ← w[k]

23 cp ← cp ← v[k]

24 (4)


正确答案:

 本题考查的是用回溯法求解0-1背包问题。回溯法有两类算法框架:非递归形式和递归形式,本题采用非递归形式表示。理解回溯法的基本思想和这两类算法框架是正确解答本题的根本要求·回溯法从第一项物品开始考虑是否应该装入背包中,因此当前考虑的物品编号k1开始,即k1。然后逐项往后检查,若能全部放入背包则将该项放入背包,此时背包的重量应该是当前的重量加上当前考虑物品的重量,即cwcw+w[k],当然背包中物品的价值也为当前的价值加上当前考虑物品的价值。若己经考虑完了所有的物品,则得到一个解,判断该解是否为当前最优,若为最优,则将该解的信息放入变量fpfwX中。若还没有考虑完所有的物品,意味着有些物品不能放入背包,此时先判断若不将当前的物品放入背包中,则其余物品放入背包是否可能得到比当前最优解更优的解,若得不到则回溯;否则继续考虑其余的物品。

【问题1】(共8分,各2分)

1k 1 其等价形式

2cw cw + w[k] 其等价形式

3k k – 1 其等价形式

4k k + l 其等价形式

第8题:

用表上作业法求解运输问题时,当某个非基变量检验数为0,则该问题有( )。

A.多重解

B. 无解

C. 退化解

D. 无穷多最优解


参考答案:D

第9题:

【问题 1】(8 分)

用回溯法求解此 0-1 背包问题,请填充下面伪代码中(1)~(4)处空缺。

回溯法是一种系统的搜索方法。在确定解空间后,回溯法从根结点开始,按照深度优先策略遍历解空间树,搜索满足约束条件的解。对每一个当前结点,若扩展该结点已经不满足约束条件,则不再继续扩展。为了进一步提高算法的搜索效率,往往需要设计一个限界函数,判断并剪枝那些即使扩展了也不能得到最优解的结点。现在假设已经设计了BOUND( v,w,k,W )函数,其中 v、w、k 和 W分别表示当前已经获得的价值、当前背包的重量、已经确定是否选择的物品数和背包的总容量。对应于搜索树中的某个结点,该函数值表示确定了部分物品是否选择之后,对剩下的物品在满足约束条件的前提下进行选择可能获得的最大价值,若该价值小于等于当前已经得到的最优解,则该结点无需再扩展。

下面给出 0-1背包问题的回溯算法伪代码。

函数参数说明如下:

W:背包容量;n:物品个数;w:重量数组;v:价值数组;fw:获得最大价值时背包的重量;fp:背包获得的最大价值;X:问题的最优解。

变量说明如下:

cw:当前的背包重量;cp:当前获得的价值;k:当前考虑的物品编号;Y:当前已获得的部分解。


正确答案:
(1)k←1或其等价形式(2)cw←cw+w[k]或其等价形式(3)k←k–1或其等价形式(4)k←k+l或其等价形式

第10题:

0-1背包问题的回溯算法所需的计算时间为(),用动态规划算法所需的计算时间为()。


正确答案: O(n*2n);O(min{nc,2n})

更多相关问题